186 research outputs found

    ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm

    Full text link
    Multivariate problems are typically governed by anisotropic features such as edges in images. A common bracket of most of the various directional representation systems which have been proposed to deliver sparse approximations of such features is the utilization of parabolic scaling. One prominent example is the shearlet system. Our objective in this paper is three-fold: We firstly develop a digital shearlet theory which is rationally designed in the sense that it is the digitization of the existing shearlet theory for continuous data. This implicates that shearlet theory provides a unified treatment of both the continuum and digital realm. Secondly, we analyze the utilization of pseudo-polar grids and the pseudo-polar Fourier transform for digital implementations of parabolic scaling algorithms. We derive an isometric pseudo-polar Fourier transform by careful weighting of the pseudo-polar grid, allowing exploitation of its adjoint for the inverse transform. This leads to a digital implementation of the shearlet transform; an accompanying Matlab toolbox called ShearLab is provided. And, thirdly, we introduce various quantitative measures for digital parabolic scaling algorithms in general, allowing one to tune parameters and objectively improve the implementation as well as compare different directional transform implementations. The usefulness of such measures is exemplarily demonstrated for the digital shearlet transform.Comment: submitted to SIAM J. Multiscale Model. Simu

    Asymptotic Analysis of Inpainting via Universal Shearlet Systems

    Get PDF
    Recently introduced inpainting algorithms using a combination of applied harmonic analysis and compressed sensing have turned out to be very successful. One key ingredient is a carefully chosen representation system which provides (optimally) sparse approximations of the original image. Due to the common assumption that images are typically governed by anisotropic features, directional representation systems have often been utilized. One prominent example of this class are shearlets, which have the additional benefitallowing faithful implementations. Numerical results show that shearlets significantly outperform wavelets in inpainting tasks. One of those software packages, www.shearlab.org, even offers the flexibility of usingdifferent parameter for each scale, which is not yet covered by shearlet theory. In this paper, we first introduce universal shearlet systems which are associated with an arbitrary scaling sequence, thereby modeling the previously mentioned flexibility. In addition, this novel construction allows for a smooth transition between wavelets and shearlets and therefore enables us to analyze them in a uniform fashion. For a large class of such scaling sequences, we first prove that the associated universal shearlet systems form band-limited Parseval frames for L2(R2)L^2(\mathbb{R}^2) consisting of Schwartz functions. Secondly, we analyze the performance for inpainting of this class of universal shearlet systems within a distributional model situation using an â„“1\ell^1-analysis minimization algorithm for reconstruction. Our main result in this part states that, provided the scaling sequence is comparable to the size of the (scale-dependent) gap, nearly-perfect inpainting is achieved at sufficiently fine scales
    • …
    corecore